

Lokale Elektrizitätsgemeinschaften (LEG) als Baustein der Energiewende – was ist die Rolle der Gemeinden?

Veranstaltung Modull IIb des RKBM-Klimaprogramms und der AG Dekarb

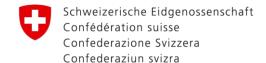
Bundesgesetz über eine sichere Stromversorgung mit erneuerbaren Energien angenommen am 9. Juni 2024

LEG

Programm

	Machbarkeitsstudie Muri b. Bern: Welche Rolle kann die Gemeinde beim Aufbau einer LEG einnehmen?	G. Siegenthaler Muinde, Gemeinde Muri b. Bern	
	Machbarkeitsstudie Energieverbund Mittelhäusern: ein Modell für die Schweiz?	H. Pestalozzi, Gemeinde Köniz, R. Knittel, im Auftrag der Gemeinde	
14.00–15.00	3. Zwei konkrete Machbarkeitsstudien		
	Offene Fragen	alle	
	Gesetzliche Grundlagen, Möglichkeiten inkl. Vor- und Nachteile	W. Hintz, Bundesamt für Energie	
13.40-14.00	2. Was gilt heute, was ab dem 1. Januar 2026?		
	Ziele, Programm	S. Frey-von Gunten, Energieberatung	
13.30–13.40	1. Einführung und Programm Begrüssung	P. Schmid, Vertretung RKBM	
10.00.10.10	4 Firefiles and December		

Programm


16.45	Apéro	
	Weiterführende Infos, Kontakte, Links Zielabgleich, Feedback der Teilnehmenden	S. Frey-von Gunten, Energieberatung P. Schmid, Vertretung RKBM
16.30–16.45	6. Abschluss	
16.00–16.30	5. Podiumsdiskussion Fragen aus dem Publikum	Alle Referierenden
15.20–16.00	 4. LEG aus Sicht der Werke ewb, BKW und Energie Belp zu folgenden Themen: ▶ Erste Erfahrungen vZEV ▶ Wie wird eine LEG praxisnah aufgebaut? ▶ Wichtigste Herausforderungen ▶ Thema Netzdienlichkeit und Raumplanung 	T. Kaiser, ewb K. Keller, BKW P. Diggelmann, Energie Belp

Ziele

- ▶ Die Gemeinden wissen, was eine LEG ist, welche gesetzlichen Grundlagen gelten und welche anderen Möglichkeiten es gibt
- ▶ Die Gemeinden kennen die möglichen Rollen, welche sie beim Aufbau/Betrieb einer LEG einnehmen können
- ▶ Die Gemeinden wissen, welche Faktoren die Wirtschaftlichkeit einer LEG beeinflussen
- ▶ Den Gemeinden verstehen, welchen Einfluss eine LEG auf das Netz haben kann und wie sie die Raumplanung beeinflusst
- ▶ Die Gemeinden kennen die Vor- und Nachteile einer LEG sowie die Chancen und Stolpersteine bei deren Umsetzung.

Bundesamt für Energie BFE Office fédéral de l'énergie OFEN Ufficio federale dell'energia UFE Swiss Federal Office of Energy SFOE

RECHTLICHER RAHMEN LEG UND ZEV: WAS GILT AB DEM 1.1. 26?

STROMGESETZ/MANTERLERLASS: ZIELE FÜR ZUBAU NEUE ERNEUERBARE

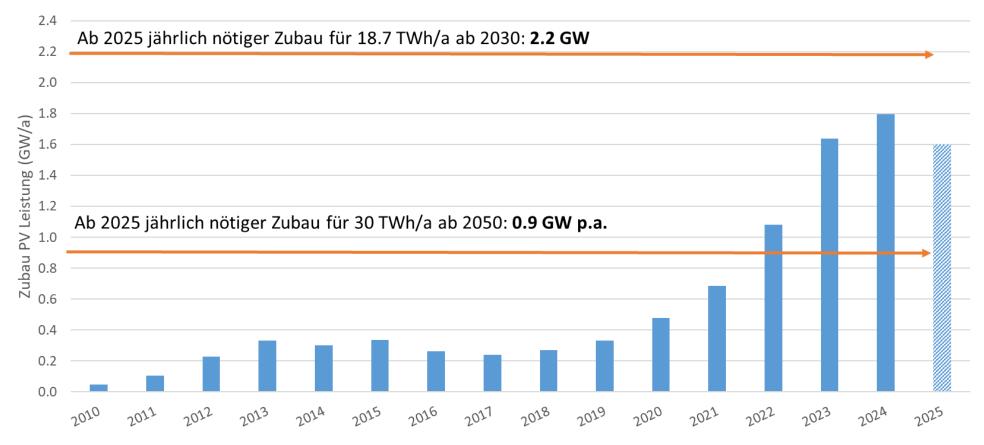
AUSBAU ERNEUERBARE: ZIELE NEE, PV & WIND

Bundesrat muss 2026 und dann alle 5 Jahre Ziele festlegen für:

- 1. Gesamthaft für EE (ohne Wasserkraft) und
- 2. für einzelne Technologien

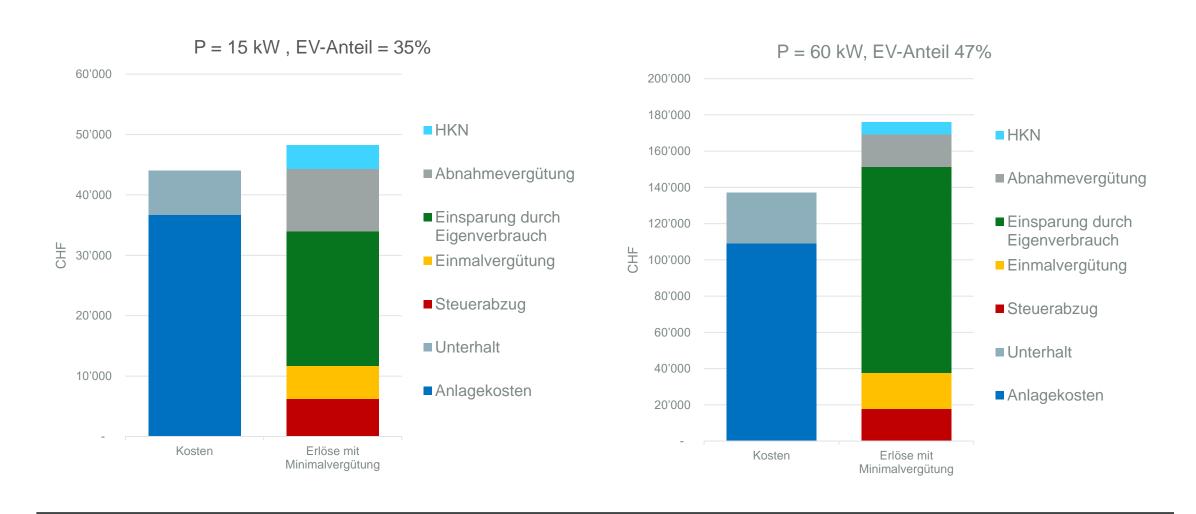
Vernehmlassungsvorschlag für Ziel 2030 (Beschluss im November '25):

- Gesamthaft 23 TWh (2025: 11 TWh)

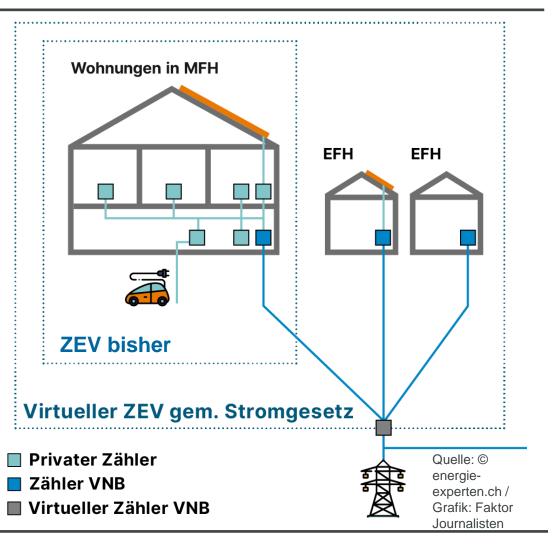

- <u>Für PV</u> 18,7 TWh (2025: 9 TWh)

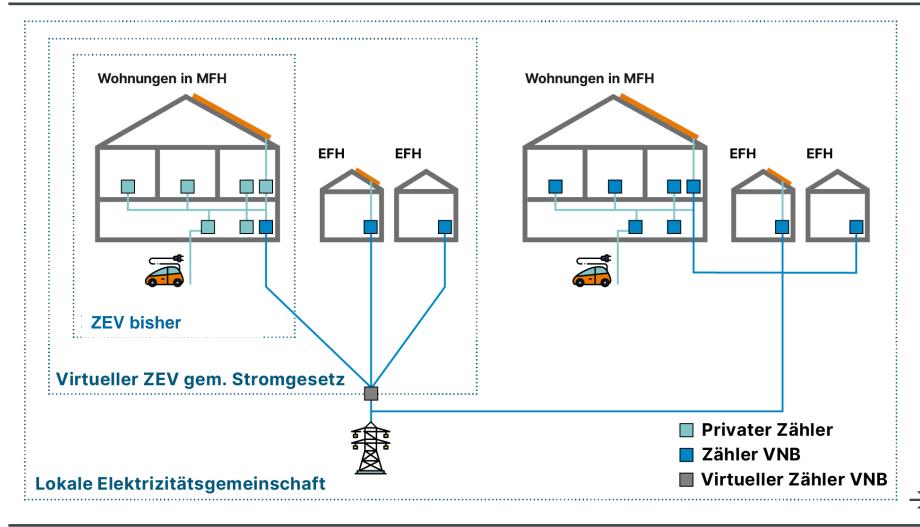
- <u>Für Wind</u> 2,3 TWh (2025: 0,2 TWh)

- Andere nEE keine Ziele


AUSBAU ERNEUERBARE: BISHER, PROGNOSE 2025 UND ZIELE

→ 2024 lieferte die PV 11% der Schweizer Stromverbrauchs, 2025 bereits ca. 14%


EIGENVERBRAUCH IST ZENTRAL: KOSTEN UND ERTRÄGE TYPISCHER PV-ANLAGEN


SYSTEMINTEGRATION ZUSAMMENSCHLUSS ZUM EIGENVERBRAUCH (ZEV) UND VIRTUELLER ZEV (AB 2025)

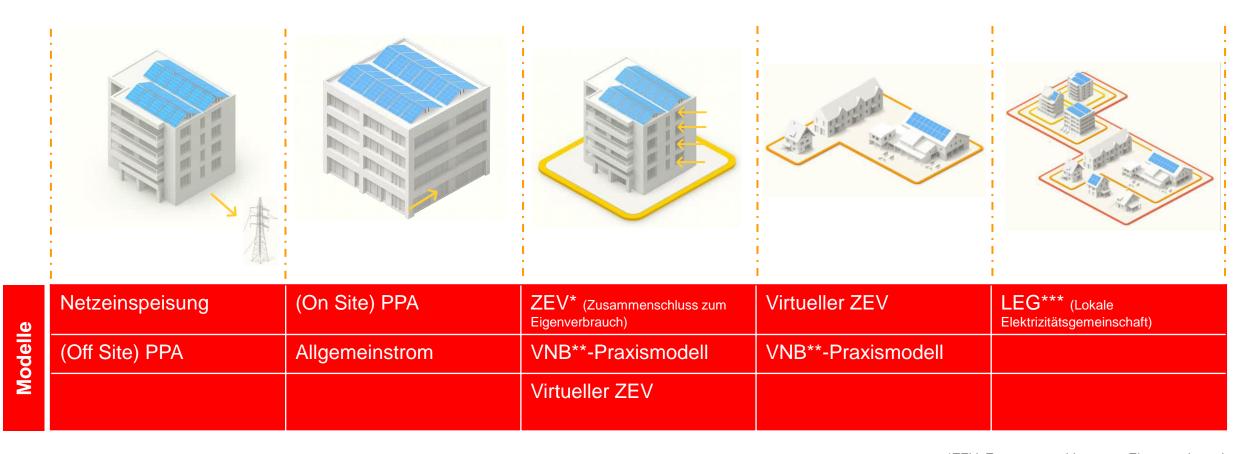
- Neu: Anschlussleitungen (bis und mit <u>Netzanschlusspunkt</u>) für Eigenverbrauch nutzbar
- Neu: VNB-Zähler nutzen für ZEV und als virtuelle Schnittstelle zum VNB
- Neu VNB muss Smartmeter innerhalb von 3 Monaten installieren
- VNB muss Netztopologie & Anschlusssituation offenlegen
- VNB muss Daten gratis liefern
- VNB muss Zugang zu Messgerät gewähren
 - → <u>www.lokalerstrom.ch</u>

SYSTEMINTEGRATION LOKALE ELEKTRIZITÄTSGEMEINSCHAFT – LEG (AB 2026)

Quelle: © energieexperten.ch / Grafik: Faktor Journalisten

→ www.lokalerstrom.ch

O

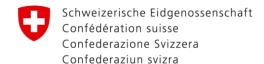

SYSTEMINTEGRATION REGELN DER LEG (AB 2026)

- Gesetz: LEG Mitglieder bei gleichem Netzbetreiber, auf gleicher Netzebene und in gleicher Gemeinde
- Verordnung: Leistung der Eigenerzeugung: mind. 5% der Anschlussleistungen aller Mitglieder
- Verordnung: Ausdehnung beschränkt auf Netzebenen 5 und 7
- Verordnung: LEG bestimmt Vertretung nach Aussen, regelt Verteilung internen Kosten und v.a. die Preise der selbsterzeugten Elektrizität sowie die Modalitäten des Ein- und Austritts
- Verordnung: Mitwirkungspflichten VNB: Offenlegung Netztopologie & Anschlusssituation, Messung der LEG-Mitglieder und Verrechnung dieser unterschieden nach LEG-Strom und Reststrom
- Verordnung: Reduziertes Netznutzungsentgelt für «LEG Strom»
 - Abschlag von 40% bei Benutzung einer Netzebene
 - Abschlag von 20% bei Benutzung von zwei Netzebenen
 - Ohne Abschlag verrechnet: Kosten für Systemdienstleistungen, Stromreserve, Netzzuschlag, Abgaben und Leistungen an das Gemeinwesen

→ www.lokalerstrom.ch

ÜBERBLICK PV VERMARKTUNGSMODELLE

*ZEV: Zusammenschluss zum Eigeneverbrauch


**VNB: Verteilnetzbetreiber

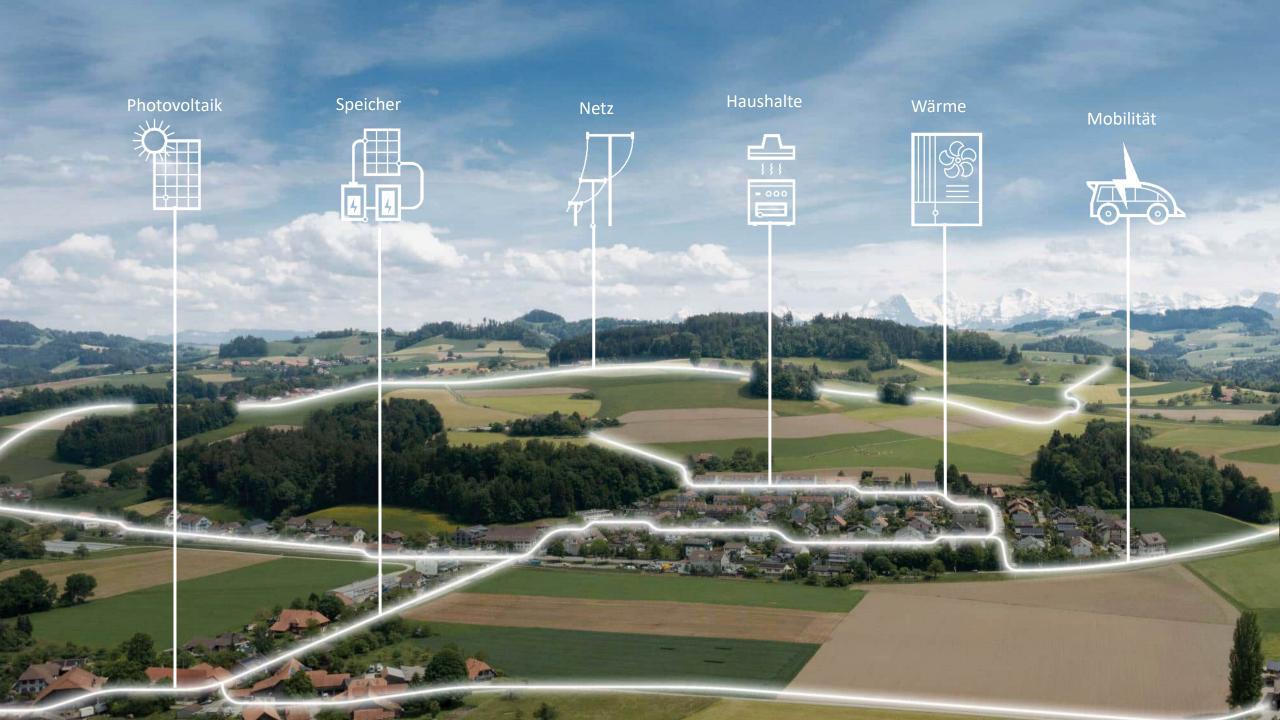
***LEG: Lokale Elektrizitätsgemeinschaften

EIGENSCHAFTEN VERMARKUNGSMODELLE MIT MEHREREN TEILNEHMERN (OHNE VNB-PRAXIS)

	ZEV	vZEV	LEG
Verfügbar ab	2018	2025	2026
Kurz erklärt	Verkauf von Eigenverbrauch « <u>hinter</u> dem öffentl. Netz» über private Leitungen (z.B. innerhalb eines Hauses)	Verkauf von Eigenverbrauch « <u>hinter</u> dem öffentl. Netz» über private Leitungen (z.B. innerhalb eines Hauses) <u>und</u> über Anschlussleitungen bis Verteilkabine (in und zwischen mehreren Häusern)	Verkauf von Strom «über das öffentl. Netz» max. Gebiet einer Gemeinde Gleicher Netzbetreiber Max Netzebenen 5 und 7
Produktions- vs. Anschlussleistung	Mindestens 10%	Mindestens 10%	Mindestens 5%
Technische Voraussetzungen	 Ein einziger Endkunde Ein <u>physischer</u> Messpunkt als Schnittstelle zum Netzbetreiber Private Zähler zur Abrechnung intern 	 Ein einziger Endkunde Ein <u>virtueller</u> Messpunkt als Schnittstelle zum Netzbetreiber Zähler (Smartmeter) des EW zur Abrechnung intern 	 Alle Teilnehmer Endkunden des EW Smart Meter des EW zur Abrechnung
Vorteile	Erhöhter EigenverbrauchKeine Netznutzungsgebühr für Eigenverbrauch	Alle Vorteile eines ZEVGrösserer PerimeterFlexibler Teilnehmerkreis innerhalbGebäude	Verteilnetz darf genutzt werdenRabatt auf Netznutzungstarif

Bundesamt für Energie BFE Office fédéral de l'énergie OFEN Ufficio federale dell'energia UFE Swiss Federal Office of Energy SFOE

FRAGEN?


Agenda

- 1. Vision & Projektgruppe
- 2. Vorstellung Machbarkeitsstudie
- 3. Schlüsselerkenntnisse
- 4. Nutzen für die Gemeinde

Vision

Mittelhäusern wird ein Modell, das praktisch aufzeigt, wie die Energieversorgung in der Schweiz im Jahr 2050 aussehen könnte.

Das Forschungsprojekt kann proaktiv Fragen beantworten, welche mit der Dekarbonisierung der Energieversorgung einhergehen (Netze, Tarife, Speicherung, Prosumerverhalten LEG, ...)

Gründe

- Der Energieverbrauch der Kunden wird klimaneutral.
- Die Kunden erhalten nachhaltige Energie aus der Region für Haus,
 Auto, Strom. Die Versorgungssicherheit steigt.
- Die erneuerbare Energieversorgung ist günstiger als die bisherige Energieversorgung. Für die Kunden ergeben sich Einsparungen.

Projektleitung & Begleitgruppe

Raoul Knittel
Projektleitung
Im Auftrag der Gemeinde

Jan Remund
Leiter Energie und Klima
Meteotest AG & Grossrat

Hans Pauli
Gründer
Im Auftrag der Gemeinde

Christof Bucher
Prof. PV
Berner Fachhochschule

Projektpartner

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Wandu Energie AG

Machbarkeitsstudie

- 1. Ziele der Studie
- 2. Systemgrenzen
- 3. Ausgangslage & Einführung
- 4. Technische Umsetzung
- 5. Vermarktung
- 6. Wirtschaftlichkeit
- 7. Organisation & Finanzierung
- 8. Fallbeispiel Grossgschneit
- 9. Zeitplan
- 10. Projektpartner
- 11. Diskussion

Download

https://energieverbund-mh.ch/projektbeschrieb

Systemgrenzen

- Der Energieverbund Mittelhäusern ist ein Forschungsprojekt.
- Die Systemgrenze liegt im Bereich Schweiz und beinhaltet deren regulatorische und energiewirtschaftliche Voraussetzungen.
- Die vorhandenen Speicher- und Pumpspeicherkraftwerke sowie die gesetzliche Winterreserve sollen damit in die Machbarkeit einbezogen werden. Das entspricht dem Einbezug von 50% Wasserkraft.

Ausgangslage

Einwohner:innen

Haushalte

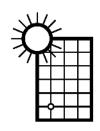
Landwirtschaft

Gewerbe

Industrie

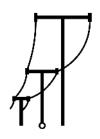
1'000

ca. 360


ca. 20 Betriebe

Kleingewerbe

Institut für Virologie und Immunologie (IVI)

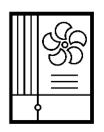


Technische Machbarkeit

Produktion

- Ertrag von total 2'500 MWh pro Jahr
- Die Dächer sind vorhanden.
- Die Dachbesitzenden sind interessiert.

Netz


- Netzverstärkungen und Netzausbau sollen möglichst vermieden werden
- Die bestehende Infrastruktur soll so gut wie möglich ausgelastet werden.
- Die technische Machbarkeit ist gegeben

Speicherung

- Um einen Selbstversorgungsgrad von 50% mit Photovoltaikanlagen zu erreichen ist die Speicherung sinnvoll.
- Der Einsatz der Speicher soll so geplant werden, dass aus Systemsicht die günstigste Variante realisiert werden kann.

Technische Machbarkeit

Wärmeversorgung

- Gewinnung von genügend Strom, damit die heute noch fossil betriebenen Heizungen in Zukunft mit Wärmepumpen ersetzt werden könnten.
- Gute Ausgangslage für Energieversorgung im Winterhalbjahr

Mobilität

- Gewinnung von genügend Strom, um die heute noch fossil betriebenen Fahrzeuge in Zukunft mit Elektroautos zu ersetzen.
- Grosses Potential f
 ür Lastmanagement

Produktions- und Lastmanagement

- Produktion, Speicherung und Verbrauch des gewonnenen Stromes müssen messbar und steuerbar sein
- Nutzung der Flexibilitäten um das Netz effizienter zu betreiben.
- Generieren eines wirtschaftlichen Mehrwerts

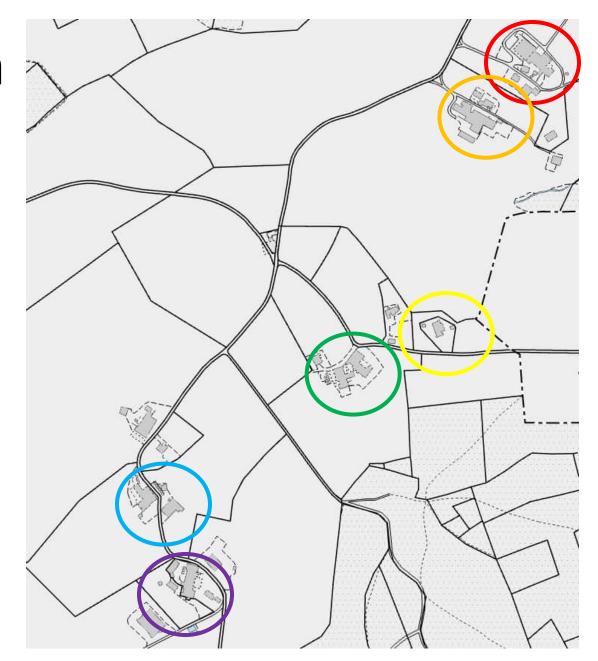
Organisation & Finanzierung

- Für Bau und Betrieb der Anlagen wird die «Energieverbund Mittelhäusern AG» gegründet
- Diese finanziert ihre Investitionen durch Aktienkapital
- Weil es ein Pilotprojekt ist, gibt es nicht amortisierbare Mehrkosten
- Eine Bürgerbeteiligung ist angestrebt
- Zurzeit läuft die Finanzierungsphase

Vermarktung

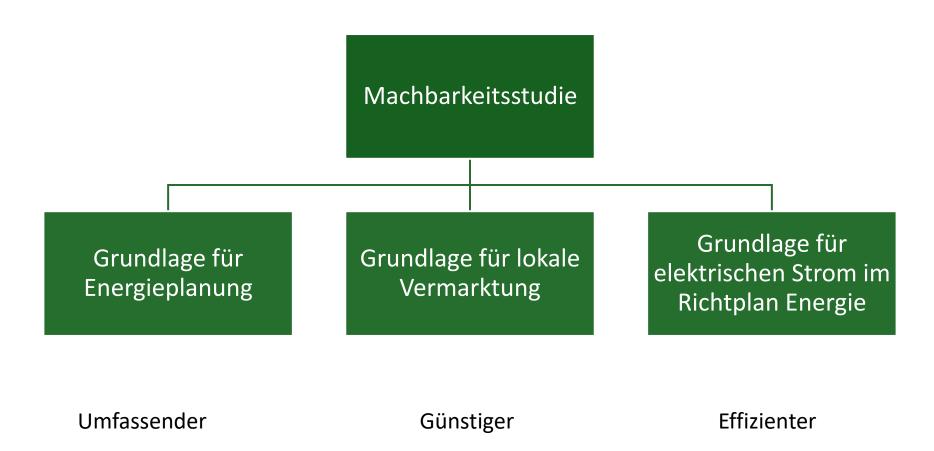
- Kanäle
 - Eigenverbrauch
 - LEG Köniz
 - Markt
- Abrechnung via Dienstleister
- Argumente für den Verkauf
 - Sauber
 - Sicher
 - Günstig
- Absichtserklärungen von Schlüsselkunden wurden bereits unterzeichnet.

Fallbeispiel Grossgschneit


- Alle angefragten Dachbesitzenden haben eine Absichtserklärung unterzeichnet
- Durch koordinierte Planung k\u00f6nnen massiv Netzkosten vermieden werden
- Die BESS sollen
 - Die Einspeisung verzögern
 - Die Einspeisung auf Eigenverbrauch und LEG optimieren

Ausarbeitung der Varianten

Name	kWp	Ertrag
PVA 1	110	110'000
PVA 2	110	110'000
PVA 3	60	60'000
PVA 4	153	150'036
PVA 5	84	92'070
PVA 6	109	114'000
Total	626	636'106


	Leistung_PV (kWp)	Leistung Speicher (kW)	Energie Speicher (kWh)	Energie PV (MWh)
PVA 1	110	73	182	110
PVA 2	110	73	182	110
PVA 3	60	40	99	60
PVA 4	153	101	252	153
PVA 5	84	55	139	84
PVA 6	109	72	180	109
Total	626	413	1'033	626

Schlüsselerkenntnisse

- Das Sparpotential bei den Netzverstärkungen ist gewaltig.
- Es braucht einen koordinierenden Akteur, um die Energiewende effizient zu bewältigen.
- Technische Erkenntnisse
 - Kennzahlen LEG
 - Abstimmung PV, Netz, Batterien, Verbrauch

Nutzen für die Gemeinde

Wann lohnt sich welche LEG für die Gemeinde?

1. Ertragsabschätzung: Wichtigste Faktoren

- Verbrauch heute und Zukunft
- Produktion heute und Zukunft
- EW-Situation & Netztopologie
- Aktuelles Stromprodukt
- Politische Vorgaben

2. Welche Rolle nimmt die Gemeinde ein?

- Betrieb eigener LEG
- Schlüsselkundin
- Mischform

Beispiel Gemeinde mit 1'000 Einwohnenden Gemeinde gründet eigene LEG

Strassenbeleuchtung & Wasserversorgung

Eigenverbrauch	Einspeisung	LEG-Eigenverbrauch
Normal	Netz: Gering (bei PVA>30kWp)	Gering
	LEG: Hoch	

[→] Für kleinere Gemeinden ist der Mehrertrag gering oder liegt sogar unter dem Aufwand.

Beispiel Gemeinde mit 10'000 Einwohnenden Gemeinde gründet eigene LEG

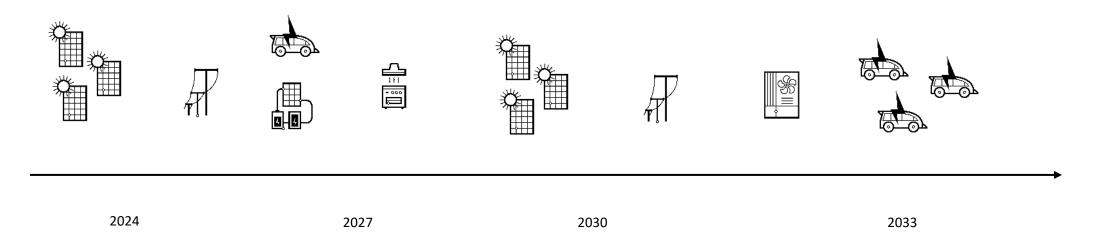
Eigenverbrauch	Einspeisung	LEG-Eigenverbrauch
Normal	Netz: Gering (bei PVA>30kWp) LEG: Hoch	Normal

[→] Für grössere Gemeinden kann eine eigene LEG interessant sein.

Beispiel Gemeinde Gemeinde als Schlüsselkundin*

*LEG initiiert durch z.Bsp. Netzbetreiberin, Energiegenossenschaft, Private,... LEG Preis: Standardtarif abzgl. Netzabschlag Inkl. Einsatz von Batteriespeichern

Eigenverbrauch	Einspeisung	LEG-Verbrauch	Einsparung
Normal	Mittel	Mittel - Hoch	~ 10 - 15%


→ Die Rolle als Schlüsselkundin kann für grössere und kleinere Gemeinden interessant sein, um den Zubau von Solaranlagen zu beschleunigen und Kosteneinsparungen zu erzielen.

Vorgehen konkret

- 1. Ertragsabschätzung
- 2. Rolle(n) definieren
- Verfügen Gemeinden über eigene PV-Anlagen können sie ab Anfang 2026 eine eigene LEG gründen
- 4. Ausgehend von dieser LEG
 - Können weitere Kunden und Anlagen aufgenommen werden
 - Bessere Vergütung PV Strom
 - Anreize für rascheren Zubau
 - Günstigeren Strom für die Kunden
 - Kann die Gemeinde die Energiewende planen

Ausblick

Elektrizität in der Energieplanung

- Kosteneinsparungen durch Koordination & Synergien
- Energiewende ermöglichen mit aktiver Raumplanung (Netzinfrastruktur, Ladestationen, Speichersysteme)
- Bevölkerung informieren

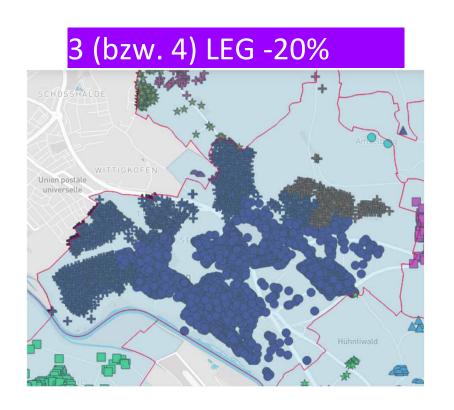
Machbarkeitsstudie Muri b. Bern: Welche Rolle kann die Gemeinde beim Aufbau einer LEG einnehmen?

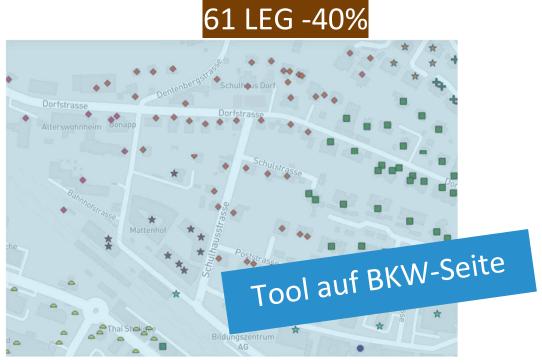
ERFA RKBM I 15. November 2025 I Zollikofen Gabriele Siegenthaler Muinde

Gemeinderätin Muri bei Bern

Porträt Muri bei Bern

13'000 Einwohnende


Gemeinde mit BKW als EVU


10.8% des totalen Stromverbrauchs der Gemeinde wird lokal produziert

Netztopologie erlaubt 4 LEGs -20% bzw. 61 LEGs -40%

Netztopologie definiert LEG-Möglichkeiten

Woher kommt Muri

Muri-Gümligen Sonnenstrom

- Produkt Muri-Gümligen Sonnenstrom (basierend auf Herkunftsnachweisen)
- Klima- und Energiestrategie 2045
- Energierichtplanung mit Massnahmenblatt PV/LEG (Entwurf nach Mitwirkung)

Warum eine LEG

Mehr lokalen Strom lokal produzieren + verbrauchen

- Optimierung Netzausbau mit Kosteneinsparung (Ausmass umstritten)
- Erhöhung PV-Stromproduktion

LEG als Anreiz mit lokaler Wertschöpfung

- Produzierende → Steigerung der lokalen Energieproduktion
- Kund:innnen → Stromverbrauch netzdienlich optimieren

Vision LEG: Vier Zutaten

Das dreijährige Projekt in dem kleinen Dorf unweit von Lugano wurde im Sommer 2022 abgeschlossen. Dafür wurden der Kindergarten, 18 Wohngebäude, zehn Wärmepumpen, sechs Elektroboiler, eine Quartierbatterie und sechs Photovoltaikanlagen zusammengeschlossen.

Produktion Mehrere PV-Anlagen

Verbrauch Mehrere Kunden / Verbrauchsanlagen

Steuerung Information Kunden / automatische Steuerung Anlagen

Speicherung Strom auch zeitversetzt lokal nutzen

→ Möglichst viel Strom vor Ort nutzen

WWW.AEMSA.CH

Fokus Gemeinde: Grössere LEGs für grösseren Mehrwert

Aus Sicht Gemeinde sind v.a. grössere LEGs interessant, mit einem LEG-Betreiber, einem professionellen LEG-Dienstleister (Abrechnung) sowie zahlreichen LEG-Kunden und -Produzentinnen.

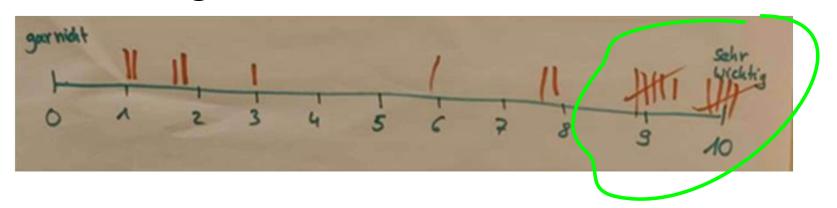
≠

"Selbsthilfe-LEG" mit geringer Anzahl Liegenschaften (mit oft gleicher Eigentümerschaft).

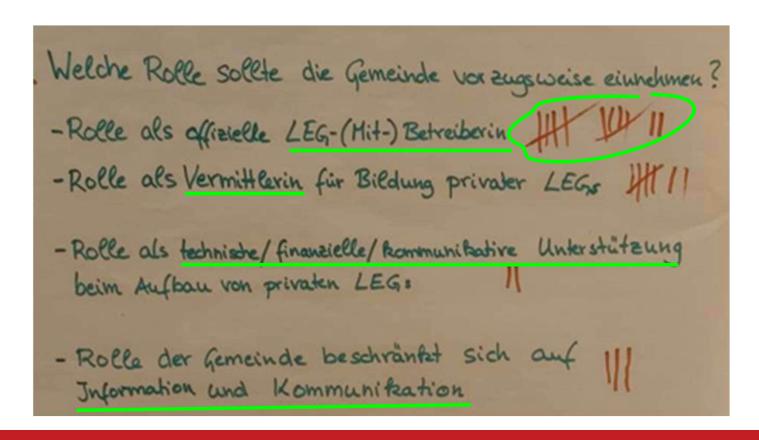
Ausgangslage für Rolle der Gemeinde

Kein rechtlicher Auftrag / kein Informationsvorteil gegenüber Privaten

Grössere LEG: Rolle als offizielle LEG-Betreiberin?


Gemeinde hat nur unvollständige Angaben zu PV-Anlagen, keine Angaben zu ZEV und vZEV, keine Angaben zu Grossverbrauchern (Thema Datenschutz)

Rolle als Stromkundin / Stromproduzentin → Wie für alle anderen Liegenschaftseigentümerschaften möglich


Erste Rückmeldungen am LEG-Anlass von letzter Woche...

Wie wichtig ist ein Mitmachen der Gemeinde?

Welche Rolle soll die Gemeinde einnehmen?

Das A und O für grössere LEGs: Ist eine LEG wirtschaftlich?

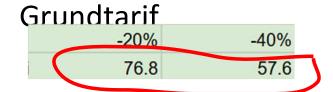
Die LEG ist keine Goldgrube ...

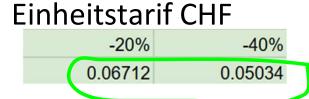
Wirtschaftlichkeitsmodell LEG = "Marge"ist begrenzt

#1 Netzrabatt

Rabatt -20 bzw. -40% auf den Netzkosten (Grundtarif und Arbeitstarif)

#2 Verkaufsmarge


Differenz zwischen Ankaufs- und Verkaufspreis für lokalen Strom



#1 Netzrabatt: Prozentualer Rabatt auf EVU Netztarifen (garantiert)

	CHF/Jahr/	CHF/Jahr/Messtelle			Rp./kWh			
				Energy Blue				
	Grund	Itarif		Einheitstarif (0–24 Uhr)				
	exkl. MWSt.	inkl. MWSt.		exkl. MWSt.	inkl. MWSt.			
Energietarif	39.00	42.16		10.02	10.83			
Netznutzung¹								
Netznutzungstarif	96.00	103.77		8.39	9.07			
Systemdienstleistungen Swissgrid ²				0.27	0.29			
Stromreserve ³				0.41	0.44			
Tarifzuschlag solidarisierte Kosten ⁴		,		0.05	0.05			
Messtarif ^s	79.00	85.40						
Abgaben								
Gesetzliche Förderabgabe ⁶				2.30	2.49			
Abgabe an Kanton / Gemeinde ⁷	2							

Rabatte exkl. MWSt (CHF)

#2 Verkaufsmarge durch Tarife des EVU begrenzt (variabel)

Rp./kWh CHF/Jahr/Messtelle Rp./kWh Rp./kWh Risikofaktor! Energy Energy Energy Blue Green Grey Einheitstarif Einheitstarif Einheitstarif Grundtarif (0-24 Uhr) (0-24 Uhr) (0-24 Uhr) inkl. exkl. inkl. exkl. inkl. exkl. inkl. exkl. MWSt. MWSt. MWSt. MWSt. MWSt. MWSt. MWSt. MWSt. Energietarif 39.00 42.16 9.02 10.02 10.83 9.75 12.52 13.53

Energietarif Energy Blue (=Standardprodukt) = 10.02 Rp.

Aktueller Rückliefertarif BKW für eingespeisten PV-Strom: 9.5 Rp (davon 3.5 Rp als Herkunftsnachweis, unverändert seit 1.7.24) - Tarif wird quartalsweise rückwirkend angepasst

Aktuelle Differenz 0.52 Rp = CHF 0.0052

Marge einer LEG

(Basis = BKW Tarife 2026, Rückliefertarif 3. Quartal 2025)

LEG -20%

rund 3 Rp. pro kWh

LEG -40%

rund 5 Rp. pro kWh

Konstante Marge / kWh

Diese Marge muss reichen, um folgende Posten zu decken:

- Kosten der LEG (Admin/Abrechnung)
- Gewinn für Kund:innen
- Gewinn für Produzente:innen

Was heisst das für Stromkund:innen?

Annahme: Finanzieller Vorteil pro kWh von 0.5-1.5 Rp.

Beispiel: 5-Zi-Wohnung mit ø Stromverbrauch von 4'500 kWh

Annahme: 50% des Strombedarfs kann durch die LEG geliefert werden =

2'250 kWh

Finanzieller Gewinn pro Jahr: CHF 11.25 - 33.75

Was heisst das für Stromproduzent:innen?

Annahme: Finanzieller Vorteil pro kWh von 0.5-1.5 Rp.

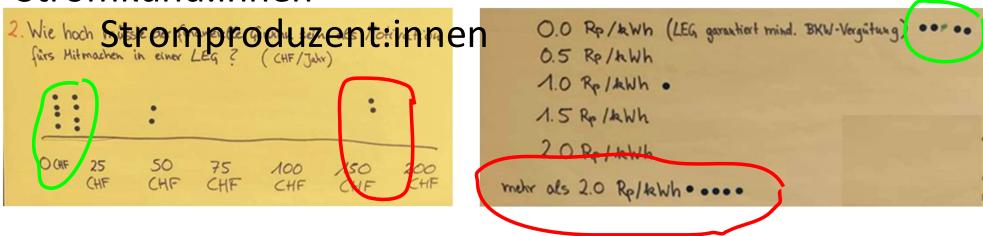
Beispiel: Grosse PV-Anlage mit ca. 250 m2 und Jahresproduktion von 60'000 kWh

Annahme: 50% des Strombedarfs kann an die LEG verkauft werden = 30'000 kWh

Finanzieller Gewinn pro Jahr: CHF 150 - 450

Grundsätzliche Wirtschaftlichkeit, ja aber ...

Administrations- und Abrechnungskosten müssen SEHR TIEF sein -> bedingt hohen Automatisierungsgrad



LEG-Stromkund:innen und -Stromproduzent:innen müssen mitmachen, obwohl ihr finanzieller Gewinn überschaubar ist

Erste Rückmeldungen am LEG-Anlass von letzter Woche...

Stromkund:innen

Ist die grundsätzliche Wirtschaftlichkeit gegeben, dann ...

... kann der Gewinn in der LEG gesteigert werden durch

Erhöhung Eigenverbrauchsgrad

→ Interesse Produzent:innen

% **Produktion**

Lokaler Verbrauch Erhöhung Autarkiegrad

→ Interesse Kund:innen

Lokaler **Bedarf**

Ein Blick über Muri hinaus...

Stadtwerk Winterthur: Für jede Trafostation wird standardmässig eine LEG eingerichtet.

Kund:innen zahlen für LEG-Solarstrom aktuell 27,33
Rp./kWh im Hochtarif und 24,70 Rp./kWh im Niedertarif.
Das ist deutlich weniger als beim Standardprodukt
KlimaSilber mit 32,20 Rp./kWh (HT) bzw. 28,37 Rp./kWh
(NT). Stadtwerk Winterthur Website

Produzent:innen erhalten für ihren in der LEG verkauften Solarstrom 15,77 Rp./kWh (HT) bzw. 14,96 Rp./kWh (NT). Davon werden 2 Rp./kWh zzgl. 8,1 % MwSt für den Service AbrechnungKomfort LEG abgezogen, sodass netto 13,61 Rp./kWh im Hochtarif und 12,80 Rp./kWh im Niedertarif bei den Anlagenbetreibenden ankommen.

- Wirtschaftlichkeit hängt von konkreten Tarifen des EVU ab?
- LEG für nicht finanziell motivierte Kundschaft?
- Abrechnung durch EVU wirtschaftlich sinnvoll?

Erste Schlussfolgerungen für Muri-Gümligen

Ansatz: Start mit einer Test-LEG, um Erfahrungen zu sammeln. Bildung der Test-LEG soll sich orientieren an:

- Einbinden von möglichst vielen gemeindeeigenen Liegenschaften, insbesondere denjenigen mit einer PV-Anlage
- Punktuelles Einbinden von Grossverbrauchern und ev. weiteren PV-Anlagen
- Nach Möglichkeit Einbinden von bestehenden (virtuellen)
 ZEVs

Geplant: Machbarkeitsstudie Speicherung

- Speichertechnologien mit Vor- / Nachteilen auf Stufe Gemeinde
- Wo im Netz machen Speicher am meisten Sinn, ex. Quartier vs. Liegenschaften
- Welche Rolle spielt eMobilität bei der zukünftigen Speicherung

Das Fernziel bleiben grössere LEG ...

- Grössere LEG sind komplex, einige Fragen sind noch nicht restlos geklärt
- Tiefere Kosten bei Abrechnung abwarten
- Wird LEG links überholt mit neuen Rahmenbedingungen? ex. Dynamische Kundentarife, dynamische Rückliefertarife, Rücklieferungsbeschränkung auf 70% Nennleistung, Strommarktliberalisierung
- Verbessert der Gesetzgeber die LEG-Vorgaben?
- Austausch und Zusammenarbeit mit anderen Gemeinden

Fragen?

Vielen Dank.

Energie Belp WIR VERSORGEN DIE REGION!

Förderung Bau von PV-Anlagen durch lokale Vermarktung von Solarstrom

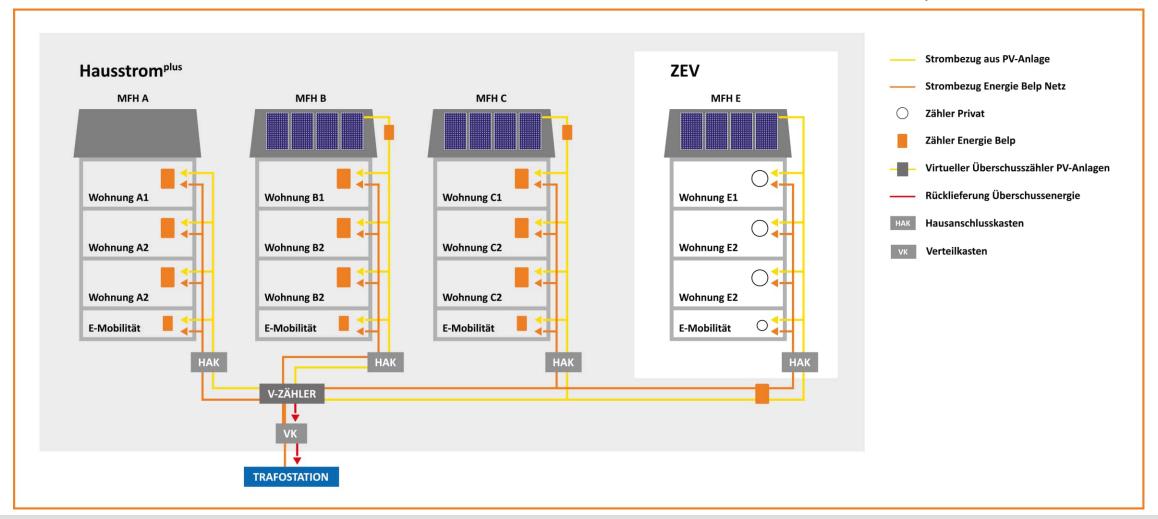
Verfasser: Patrick Diggelmann Datum: 29. Oktober 2026

Mantelerlass ermöglich erweiterte Nutzung von Solarstrom

Neue Stromversorgungs- und Energiegesetzgebungen ermöglichen Solar-Strom-Produzenten, im Rahmen von **Eigenverbrauchsgemeinschaften** lokal erzeugten **Solar-Strom an Nachbarn** mit demselben Netzanschlusspunkt zu **verkaufen** und so den Eigenverbrauch zu erhöhen:

- Stärkere Investitionsanreize für den Bau neuer PV-Anlagen, da gesteigerte Wirtschaftlichkeit den Ausbau attraktiver macht
- Günstiger lokaler Solarstrom für Strombezüger

Bestehendes Praxismodell weiterentwickelt zu Hausstrom^{plus}


Hausstrom^{plus} – virtuelle Eigenverbrauchsgemeinschaften für eine optimierte Nutzung von Solarstrom

Mit der neuen Stromversorgungs- und Energiegesetzgebung können ab 1. Januar 2025 PV-Stromproduzenten im Rahmen von virtuellen Eigenverbrauchsgemeinschaften lokal produzierten PV-Strom den Nachbarn verkaufen und damit den Eigenverbrauch erhöhen.

Eigenverbrauchsgemeinschaft – Solar-Strom lokal teilen und attraktive Erlöse erzielen

Mit Hausstrom^{plus} kann Solar-Strom an Verbrauchern mit demselben Netzanschlusspunkt verkauft werden.

Energie Belp übernimmt mit Hausstrom^{plus} die Abrechnung zwischen Produzenten und Bezügern – transparent und zuverlässig

Abrechnung

- Kontrolle der Zählerwerte, Aufschlüsselung nach PV-Strom und Netzstrom, Kundenbetreuung.
- Erstellung Rechnung und Inkasso des Eigenverbrauchs.
- Quartalsweise Überweisung der Einnahmen für den PV-Strom an die Produzenten (abzüglich Dienstleistungsentgelt).

Messinfrastruktur

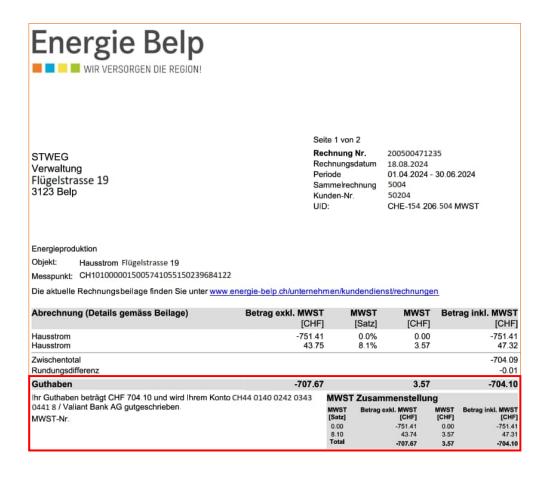
Betrieb des Smart Meter-Systems.

27.11.2025

Optional: Einholung Verträge zwischen den Teilnehmern von Hausstrom

- Erstellung und Einholung der Verträge und Vollmachten zwischen den Hausstrom^{plus}-Teilnehmern.
- Ladestrom: Integration von Ladestation für Elektroautos in Hausstrom^{plus} möglich

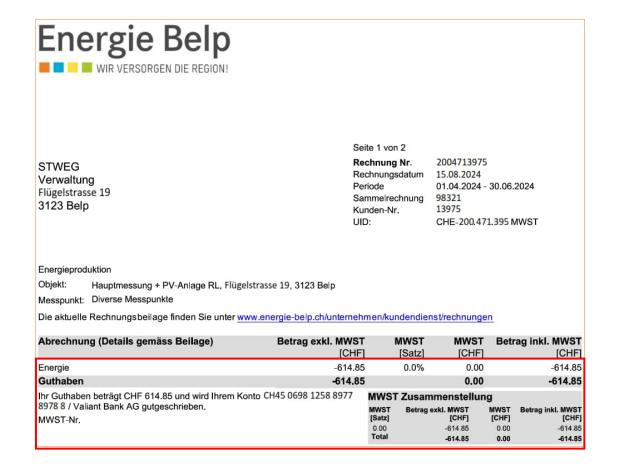
Übersichtliche Abrechnung über Bezug PV-Strom und Netzstrom


Energie Belp wir versorgen die region!					
STWEG Verwaltung Flügelstrasse 19 3123 Belp	Rec Rec Per Sar	te 1 von 2 chnung Nr. chnungsdatum riode mmelrechnung nden-Nr.	1517189 15.08.2024 01.04.2024 - 70095 569888 CHE-122.31	30.06.	
Objekt: Allgemein, Flügelstrasse 19, 3123 Belp Messpunkt: CH12345678910111213141516171819					
Die aktuelle Beehaungsheilege finden Sie unter wur	v.energie-beip.cn/unternem	nen/kundendier	istrecimunge	111	
Die aktuelle Rechnungsbeilage finden Sie unter www. Abrechnung (Details gemäss Beilage)	Betrag exkl. MWST	MWST	MWST	Betr	ag inkl. MWST
	[CHF]	[Satz]	[CHF]	Betr	[CHF]
Abrechnung (Details gemäss Beilage)	[CHF] 186.25	[Satz] 8.1%	[CHF] 15.08	Betr	[CHF] 201.33
Abrechnung (Details gemäss Beilage) Energie Netznutzung inkl. Abgaben	[CHF]	[Satz] 8.1% 8.1%	[CHF]	Betr	[CHF] 201.33 218.96
	[CHF] 186.25 202.55	[Satz] 8.1% 8.1%	[CHF] 15.08 16.41	Betr	[CHF]
Abrechnung (Details gemäss Beilage) Energie Netznutzung inkl. Abgaben Hausstrom Zwischentotal Rundungsdifferenz	[CHF] 186.25 202.55	[Satz] 8.1% 8.1% 0.0%	[CHF] 15.08 16.41	Betr	[CHF] 201.33 218.96 17.05 437.34
Abrechnung (Details gemäss Beilage) Energie Netznutzung inkl. Abgaben Hausstrom Zwischentotal	[CHF] 186.25 202.55 17.05	[Satz] 8.1% 8.1% 0.0%	[CHF] 15.08 16.41 0.00		[CHF] 201.33 218.96 17.05 437.34 0.01

				No. of Concession					
Bezeichnung	Zähler Nr.	Stand alt	Stand neu	Dauer Faktor	Menge	Ansatz	Betrag CHF exkl.	Satz	
Energie									
Haushalt & Kleingewerbe	(Energie)								
Hochtarif					222 kWh	17.15 Rp.	38.05	8.1%	41.13
Niedertarif					864 kWh	17.15 Rp.	148.20	8.1%	160.20
Total									201.33
Netznutzung									
Haushalt & Kleingewerbe	(Netznutzung)								
Hochtarif					222 kWh	10.10 Rp.	22.40	8.1%	24.21
Niedertarif					864 kWh	10.10 Rp.	87.25	8.1%	94.32
Grundpreis				3 Mt.	1	10.50 Fr.	31.50	8.1%	34.05
Systemdienstleistungen (S	DL swissgrid)				1'086 kWh	0.75 Rp.	8.15	8.1%	8.81
Stromreserve					1'086 kWh	1.20 Rp.	13.05	8.1%	14.11
Förderabgaben (KEV)					1'086 kWh	2.30 Rp.	25.00	8.1%	27.03
Abgabe an Gemeinwesen	NS				1'086 kWh	1.40 Rp.	15.20	8.1%	16.43
Total									218.96
Hausstrom					_				į
Hausstrom									
Eigenverbrauch aus PV-Ar	lage				59 kWh	28.90 Rp.	17.05	0.0%	17.05
Total									17.05
Total Objekt									437.34

S. 6

Übersichtliche Abrechnung über Stromverkauf mit Hausstrom^{plus}



STWEG Flüge	Istrasse 19, Verwaltung	, 3123 Be	p						
Bezeichnung	Zähler Nr.	Stand alt		Dauer Faktor	Menge	Ansatz	Betrag CHF exkl.		Betrag CH ink
Hausstrom									
Hausstrom Gutschrift									
Abrechnungsdienstleistung Hausstrom				3 Mt.	7	2.08	33 43.75	8.1%	47.3
Tagesstrom Eigenverbrauch					2'580 kWh		-745.61	0.0%	-745.6
Nachtstrom Eigenverbrau	ıch				20 kWh		-5.80	0.0%	-5.8
Total									-704.0

27.11.2025

Übersichtliche Abrechnung über Rücklieferung ins Verteilnetz

Rechnung Nr. 200471397	5								
	PV-Anlage RL, Flüg asse 19, Verwaltung			Belp					
Bezeichnung	Zähler Nr.	Stand alt	Stand neu	Dauer Faktor	Menge	Ansatz	Betrag CHF exkl.	MWST Satz	Betrag CHF inkl
Energie	lustorE4977660								
Messpunkt: CH589701463M RL PV-Anlage (Stromrück)									
Rückgelieferte Menge Tag	3 ,				-3'722 kWh	15.52 Rp.	-577.65	0.0%	-577.65
Rückgelieferte Menge Nach	t				0 kWh	15.52 Rp.			
HKN und Förderbeitrag Ene	rgie Belp AG				-3'722 kWh	1.00 Rp.	-37.20	0.0%	-37.20
									-614.85
Total									

Attraktives Ertragspotenzial steigert Attraktivität von PV-Anlagen

PV-Anlage mit 30 kWp	
Solarstromproduktion	30'000 kWh
Eigenverbrauch 30 %	9'000 kWh
Ertrag Rücklieferung bei 17'850 kWh (2. und 3. Quartal; 5.124 Rp./kWh)	915 CHF
Ertrag mit Hausstrom ^{plus} für 10'000 kWh à 28.00 Rp./kWh Ertrag Rücklieferung für 7'850 kWh à 5.124 Rp./kWh Total Ertrag	2'800 CHF 402 CHF 3'202 CHF
Kosten bei 10 Teilnehmern (42 CHF/Jahr pro Teilnehmer)	420 CHF

S. 9

Vielen Dank für Ihre Aufmerksamkeit!

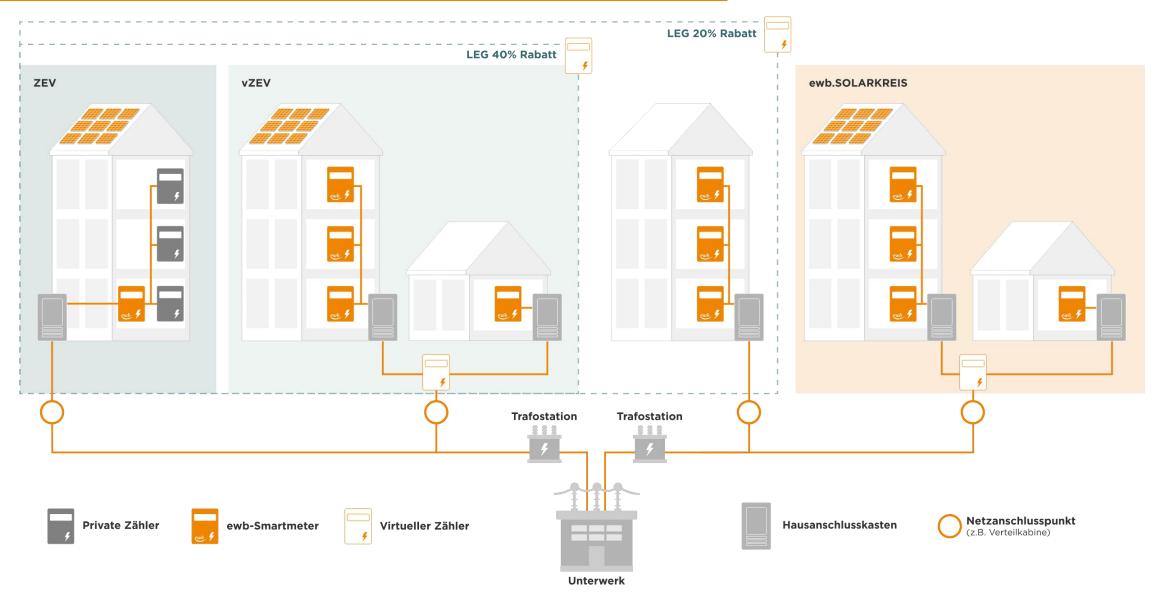
LEG aus Sicht der Werke: Energie Wasser Bern

Tobias Kaiser, Leiter Verkauf

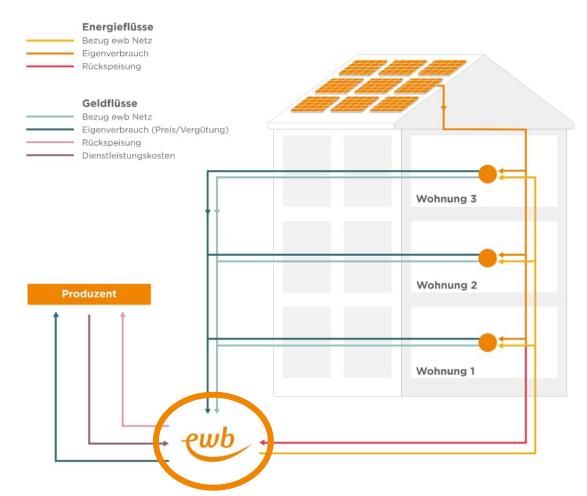
Agenda

- Erfahrungen ZEV und vZEV
- ewb.Solarkreis als Alternative
- LEG in der Praxis
- Herausforderungen

Erfahrungen ZEV und vZEV



- ➤ **Timelag** Gründung → Anmeldung?
- vZEV bei Fachpartner:innen noch nicht ausreichend bekannt / verbreitet
- ➤ ZEV aufgrund Wertschöpfungstiefe für Dienstleister deutlich attraktiver
 → Angebot für vZEV sehr spärlich
- > Abwicklung für «Laien» sehr komplex


ewb.SOLARKREIS als Alternative zu (v)ZEV

ewb.SOLARKREIS

- keine (v)ZEV-Gründung → keine Verträge zwischen Produzenten und Verbrauchern
- Kund:innen bleiben Vertragspartner:innen von ewb
- keine eigene Abrechnung und kein Inkasso innerhalb der Eigenverbrauchsgemeinschaft

Gründung und Anmeldung einer LEG bei ewb

Swisspower LEGhub

als Teil von Swisspower
werden wir für die
Kundeninformation (Topologie)
sowie den Anmeldeprozess die
Plattform LEGhub einsetzen

LEG check

Liegenschaftsadresse eingeben → potentielle Teilnehmende (Adresse, keine Personendaten!) werden angezeigt

LEG bilden

Gründungsprozess online →
generiert Anmeldeformular für
VNB sowie Vertrag für
Teilnehmer:innen

Herausforderungen

Sicht LEG-Betreiber:innen

- Komplexität der LEG-Bildung und -Abwicklung für Laien noch grösser als vZEV
- Dienstleistungen für LEG (Gründung, Pricing, Vertragsmanagement, Abrechnung, Inkasso) sind (noch) ein white (oder gar grey?) space
- Wirtschaftlichkeit, falls innerhalb der LEG abgerechnet werden muss

Sicht VNB

- Informationsvermittlung und «Schulung» Kund:innen
- Topografie vs. Netztopologie
- Mehraufwand für Vertragsmanagement, komplexere Datenaufbereitung, Datenbereitstellung, Kundenservice

Fragen?

Herzlichen Dank für Ihre Aufmerksamkeit

Tobias Kaiser

Leiter Verkauf

tobias.kaiser@ewb.ch

+41 79 664 06 22

www.ewb.ch

Strom mit den Nachbarn teilen ZEV, vZEV und LEG

Erfahrungen mit ZEV und vZEV

ZEV

vZEV

Seit 2018

Aktive ZEV: 4958

Jeden Monat kommen ca. 85 ZEV-Anträge dazu

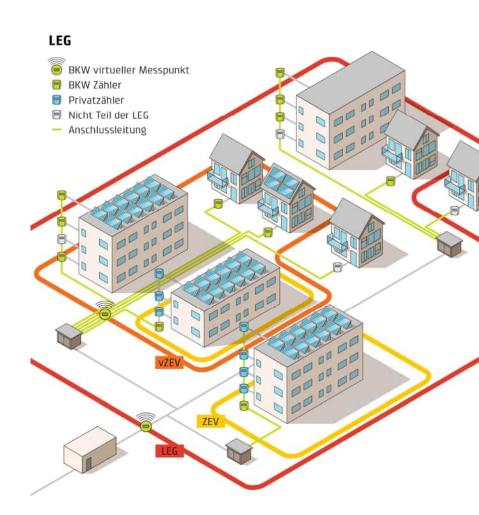
Start auf den 1.1.2025

Aktive vZEV: 162 (Stand November 2025)

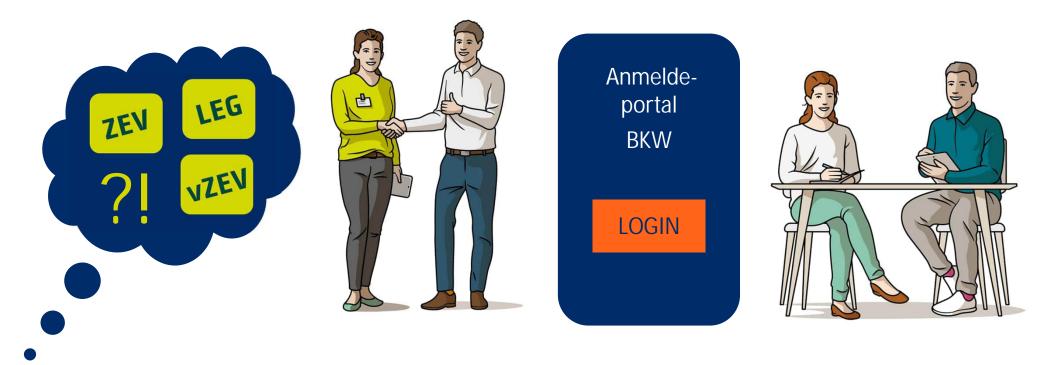
Monatlich ca. 20 neue vZEV

LEG-Aufbau in der Praxis

Ziele definieren und Teilnehmende identifizieren


- Interaktive LEG-Karte der BKW nutzen
- Kreis der Teilnehmenden auf 20% oder 40% Rabatt eingrenzen

Rechtliche und organisatorische Rahmenbedingungen festlegen


- Vertrag zwischen den Teilnehmenden, Detaillierung der internen Konditionen, Regelungen Zuständigkeiten LEG-Betreiber
- Wird ein Dienstleister für die Gründung und / oder die Abrechnung innerhalb der LEG eingesetzt?

Anmeldung der LEG beim Verteilnetzbetreiber

Verteilnetzbetreiber prüft Anträge und installiert Smart Meter, wo noch keine vorhanden

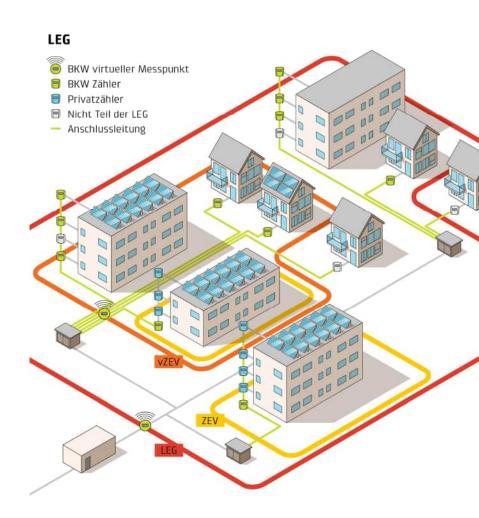
Eigenverbrauchsgemeinschaft / LEG in der Praxis

Informieren

www.bkw.ch/eigenverbrauch www.lokalerstrom.ch

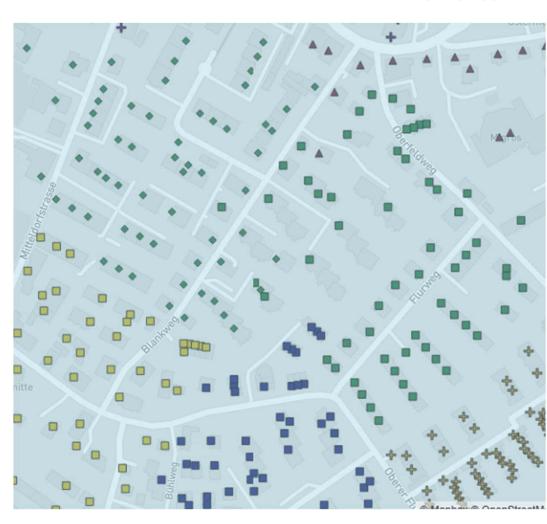
Partner finden Gemeinschaft organisieren Anmeldung -> Anmeldeportal

Umsetzen / Abrechnen


LEG-Betrieb in der Praxis

Innerhalb der LEG:

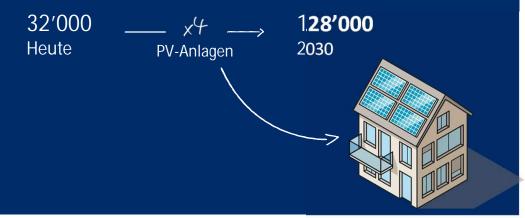
- Gründung und Betrieb der LEG / Vertrag zwischen den Teilnehmenden
- Laufende Anpassungen Teilnehmerschaft
- Sicherstellung genügend PV-Kapazität
- Preisverhandlungen intern
- Abrechnung innerhalb der LEG


Zwischen LEG und VNB

- Fortlaufende Anpassungen bei Austritt oder Beitritt (intern und beim VNB)
- Datenlieferung an LEG Betreiber / Abrechnungsdiensteister
- Rechnungsstellung an LEG

Die BKW unterstützt Kund:innen beim Stromteilen

- ✓ Informationswebsite zu ZEV, vZEV und LEG
- Informationen zu Gründung, Teilnahme, Betrieb und Abrechnung
- ✓ Interaktive Karten für vZEV und LEG
- Portal für die Registrierung einer LEG
- Auskunft zu Abrechnung und rechtlichen Vorschriften
- ✓ Einbau Smart Meter für vZEV und LEG
- Datenlieferung für die interne Abrechnung

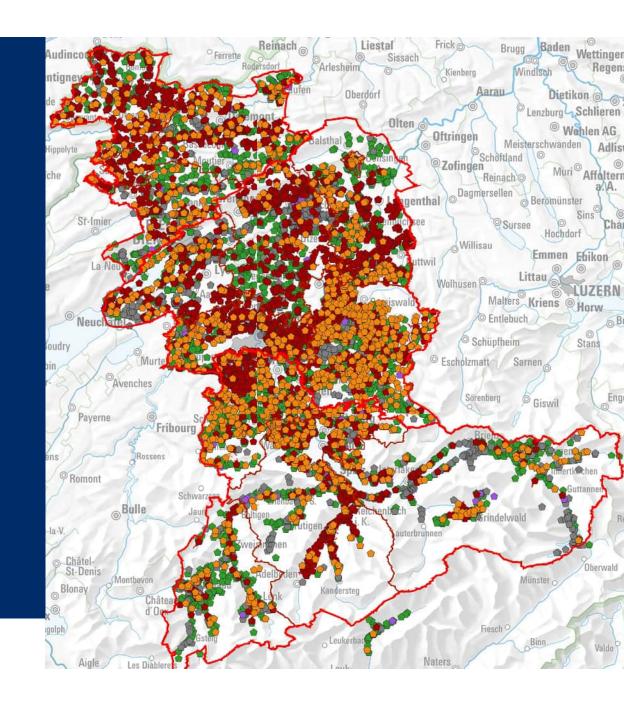


Was bedeutet die Energiewende für unser Netz?

Wir werden bis 2030 im BKW-Versorgungsgebiet

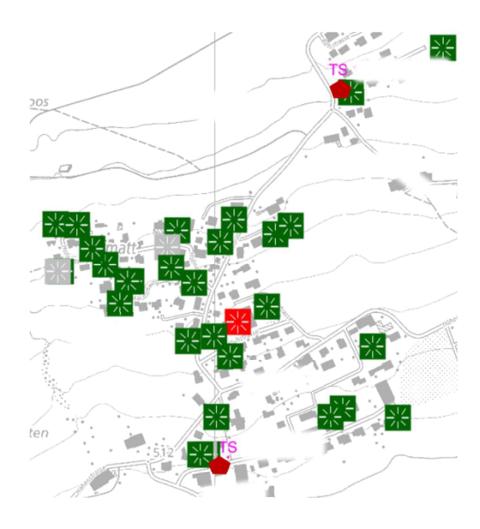
2'500 km Stromnetz um- und ausbauen 1'600 Transformatoren verstärken oder neu bauen

... damit ermöglichen wir:


Für die Energiewende braucht es neue Trafostationen

ohne Verstärkungsbedarf

deren Kreis verstärkt muss werden


muss neu gebaut werden

Keine Angabe

Beispiel Anschluss PV

- Anschluss weitere PV-Anlage (rot)
- Reservekapazität 0kVA
- Ohne Netzausbau keine Einspeisemöglichkeit
- Spannungserhöhung wäre am Einspeisepunkt unzulässig hoch (>3 %)
- Kürzere Distanz zur Trafostation erforderlich
- Bau Trafostation zum Anschluss neue PV erforderlich


Trafostationen können nicht weiter ausgebaut werden

LEG und Netzausbaubedarf

Das Teilen von Strom wird durch LEG bis maximal auf das Gemeindegebiet erweitert.

- Die LEG verwendet zum Austausch der Energie das öffentliche Verteilnetz
- Bei Anschluss von PV-Anlagen sind technische Standards (wie max. Spannungserhöhung) einzuhalten
- LEG könnten netzdienlich wirken, wenn der Verbrauch innerhalb der LEG auf die Produktion abgestimmt wird
- Hierbei können auch Speicher verwendet werden -> hier gilt es noch Erfahrungen zu sammeln
- Je nach Verhalten der LEG kann auch Netzausbaubedarf indiziert werden.

Podiumsdiskussion

Fazit

Vorteile für Gemeinden durch LEGs

- ► Sie senken langfristig ihre Energiekosten
- ▶ Sie stärken die regionale Wertschöpfung durch lokale Investitionen
- ► Sie machen sich unabhängiger von Strompreisschwankungen
- ▶ Sie fördern die Identifikation der Bevölkerung mit der lokalen Energieversorgung

Fazit

Was ist die mögliche Rolle der Gemeinden bei LEGs?

- ▶ Initiierung und Umsetzung: Gemeindeeigene LEG aufbauen oder als Schlüsselkunde auftreten, Vorbildfunktion wahrnehmen
- ▶ Netzwerke aufbauen: Koordination aller Beteiligten (Produzierende, Konsumierende und Prosumer:innen) = zentrale Herausforderung einer LEG. Gemeinde kann als neutrale Vermittlerin Netzwerk aufbauen. Beispiel: Aufnahme weiterer Teilnehmer:innen in «Gemeinde-LEG»
- ▶ Zusammenarbeit mit Verteilnetzbetreibern (VNB): Gemeinsam eruieren, welche Massnahmen zur Stärkung der erneuerbaren, dezentralen Energieversorgung umgesetzt werden können
- ▶ Rahmenbedingungen schaffen: Nutzung von lokal produziertem Strom aktiv unterstützen durch Informationsveranstaltungen / Aufbau von Vermarktung

... und so die Energiewende vor Ort voranbringen

▶ Wichtig: Eine Gemeinde hat diesbezüglich keine Verpflichtungen / gesetzliche Vorgaben.

Ziele erreicht?

- ▶ Die Gemeinden wissen, was eine LFG ist, welche gesetzlichen Grundlagen gelten und welche anderen Möglichkeiten es gibt
- Die Gemeinden kennen die möglichen Rollen, welche sie beim Aufbau/Betrieb einer LEG einnehmen können
- ▶ Die Gemeinden wissen, welche Faktoren die Wirtschaftlichkeit einer LEG beeinflussen
- ▶ Den Gemeinden verstehen, welchen Einfluss eine LEG auf das Netz haben kann und wie sie die Raumplanung beeinflusst
- ▶ Die Gemeinden kennen die Vor- und Nachteile einer LEG sowie die Chancen und Stolpersteine bei deren Umsetzung

Weiterführende Infos, Kontakte, Links

- <u>www.lokalerstrom.ch</u>
- ► <u>Solarstrom Öffentliche Energieberatung Bern-Mittelland</u> (Folien werden hier hochgeladen)
- Nächste Veranstaltung geplant am 02. April 2026 zum Thema «E-Mobilität – Hebel für Gemeinden» (Details folgen)

Zielabgleich, Feedback der Teilnehmenden

- ▶ <u>Link</u> oder QR-Code zur Umfrage, dauert 1-2 Minuten
- ► Merci!

Herzlichen Dank für Ihr Interesse!

